MEMS Front-End Manufacturing Trends

Though MEMS standardization will never happen, companies are optimizing their own technology platforms. Such process innovations will drive MEMS equipment and materials to a 7% CAGR over 2012-2018.

Innovative processes are fueling the MEMS equipment & materials market. We forecast that demand for MEMS-related equipment will grow from ~$378M in 2012 to > $510M by 2018, at a CAGR of 5.2% over the next five years. It’s interesting to note that our MEMS equipment market forecast will follow a cyclical up/downturn similar to what the mainstream IC equipment market underwent. The demand for materials and related MEMS consumables will grow from ~$136M in 2012 to > $248M by 2018 at a CAGR of 10.5% over the next five years.

AS MEMS BECOME COMMODITY PRODUCTS, MANUFACTURING WILL CHANGE AND MATURE

Today, MEMS fabrication is still very diversified and lacking in standardization; Yole Développement’s rule « one product, one process » still applies. Indeed, MEMS has a different story than IC and doesn’t follow the same roadmap as the semiconductor industry. Thus, it’s still common to see many players with radically different manufacturing approaches for the same MEMS device, sometimes within the same company (i.e. both the CMOS MEMS and hybrid approaches can be used for inertial devices or microphones).

However, as MEMS becomes a commodity product with a quicker time-to-market compared to previous generations, anything that speeds up the commercialization process is welcome. MEMS packaging is evolving in a different direction than front-end processing, and Yole Développement has already identified that packaging standardization will become increasingly critical in order to support the massive volume growth in unit shipments, and decrease overall costs associated with MEMS & sensor content. For example, microphone packaging is very similar between one manufacturer and another. Additionally, this report shows that at the front-end level, companies are developing in-house technological platforms targeted for different MEMS devices.
MEMS Front-End Manufacturing Trends report highlights the major front-end manufacturing changes. For example, TSV for CSP is gradually seeping into the MEMS industry. To this end, we’ve analyzed STMicroelectronics’ unique approach to making TSVs in its MEMS die in-house, in order to attach the die to the motherboard. This approach eliminates the area needed for the bond pads by replacing them with polysilicon vias isolated by etched-out air gaps, made with its basic MEMS process but on about a 10x larger scale. STM reports that the 20%-30% reduction in die size more than offsets the modest cost of the TSV process, resulting in a lower total cost.

However, since miniaturization will be limited, new detection principles are currently being developed at various R&D Institutes (i.e. Tronic’s M&NEMS concept) in order to lower MEMS size at the silicon level. This technology is based on piezoresistive nanowires rather than pure capacitive detection, and is poised to be a leap forward in terms of device performance and chip size. This will set the stage for a new generation of combo sensors for Motion Sensing applications, achieving both significant surface reduction and performance improvement for multi-DOF sensors.

Amongst the large array of MEMS technologies, we’ve identified several that will have the widest diffusion in the years to come. The list includes:
- Through Si Vias
- Room temperature bonding
- Thin films PZT
- Temporary bonding
- Cavity SOI
- CMOS MEMS
- Other MEMS technologies, i.e. gold bonding, could be widely used to reduce die size while maintaining great hermeticity for wafer level packaging.

In this report, we’ll also show that as MEMS moves from competing on process technology to competing on functions and systems, a move towards more standard solutions will be necessary to drive down package size and cost. Currently, MEMS foundries still compete at the process level and have to propose a wide range of processes in order to cope with new MEMS designs and structures. This approach differs from fabless companies, which usually focus on one type of MEMS design. Their main objective is to find the most experienced and reliable foundry partner in order to convince customers of their expertise. IDMs, meanwhile, generally rely on robust and established MEMS processes to manufacture their products (i.e. THELMA for ST). Foundries, which must always remain at the forefront of changes in the MEMS manufacturing landscape, have the biggest challenge.
OBJECTIVES OF THE REPORT

- To provide a forecast in units and $M for front-end MEMS equipment & materials
- To offer an overview of the equipment & materials used for the wide range of MEMS devices
- To present examples of MEMS manufacturing processes
- To show MEMS cost structures
- To highlight what’s changing in MEMS manufacturing, and why

RELATED REPORTS

- Status of the MEMS Industry 2012
- MEMS Packaging
- Deep Reactive Ion Etching
- Thin Wafer Handling
- Technology Trends for Inertial MEMS
- All reverse Engineering/Reverse Costing System
- Plus Consulting reports

COMPANIES CITED IN THE REPORT (NON-EXHAUSTIVE)

TABLE OF CONTENT

- Report Scope & Definitions p.5
 - The Report’s Key Objectives
 - What’s New in This Report?
 - The Report’s Key Findings
 - Who should be Interested in This Report?
 - Companies Cited in This Report
 - About the Authors’ Glossary
- Executive summary p.13
 - Introduction
 - MEMS Belongs to the « More than Moore » Law
 - MEMS has a Long Fabrication History
 - No Moore Law, but MEMS Technology is Evolving Anyway
 - Moving Towards Standardization?
 - MEMS Requires Special Process Steps
 - What Makes MEMS different from the Mainstream IC Industry?
 - MEMS Technologies to Watch
 - Examples of MEMS Building Blocks
 - Equipment Market Forecast for MEMS Devices
 - Materials Market Forecast for MEMS Devices
 - Generic MEMS Platforms
 - Conclusions

- Introduction to the MEMS industry: Market Dynamics & Key Players p.31
 - MEMS Sensor & Actuator Applications
 - MEMS Market Forecast Shipments (in Munits)
 - MEMS Market Sector Forecast (in $M)
 - 2011-2017 MEMS Device Forecast (in $M)
 - MEMS Market Value 2011-2017 (in $M)
 - 2011 MEMS Ranking in $M: TOP 30 players
 - 2011 MEMS Ranking in $M: TOP 30 - 70 players
 - Typology of MEMS Companies
 - Typology of MEMS Foundries
 - 2011 MEMS Foundry Ranking

- Equipment & Materials Forecast for MEMS Devices p.43
 - Equipment & Material Demand for MEMS
 - YOLE’s Methodology
 - Equipment Market Forecasts for MEMS Devices
 - MEMS Wafer Shipments by Type
 - Equipment Market Forecast Breakdown per Tool Type
 - Material Market Forecast Breakdown by Device Type
 - Material Market Forecast Breakdown by Materials
 - Detailed MEMS Process Flows & Manufacturing Trends Analysis p.58
 - Equipment Supplier Overview
 - Focus on MEMS Accelerometer: Bosch BMA250 3-Axis
 - Focus on MEMS Gyroscope: ST Micro LIS332DLFA 3-Axis
 - Focus on MEMS Microphone: Knowles SP4040LES8
 - Focus on MEMS Microbolometer: FLIR IC50601B
 - Focus on MEMS Micro-Mirror for Pico Projector: Texas Instruments

- MEMS Manufacturing Trends by Process p.181
 - MEMS Manufacturing: What’s Changing, and Why
 - MEMS Si Substrates
 - MEMS Si Wafers
 - MEMS Si Wafer Thickness
 - MEMS Oxidation
 - MEMS Etching
 - MEMS TEM Etching
 - MEMS TEM Oxidation
 - MEMS TEM Etch Rate
 - MEMS TEM Oxidation Rate
 - MEMS TEM Device Yield

- MEMS Technologies to Watch p.187
 - MEMS Interconnect
 - MEMS Interconnect Technologies & Markets
 - MEMS to ASIC
 - MEMS to CMOS
 - MEMS to Si
 - Si Microelectronics

- MEMS Manufacturing Trends by Process p.187
 - MEMS Manufacturing: What’s Changing, and Why
 - MEMS Si Substrates
 - MEMS Si Wafers
 - MEMS Si Wafer Thickness
 - MEMS Oxidation
 - MEMS Etching
 - MEMS TEM Etching
 - MEMS TEM Oxidation
 - MEMS TEM Etch Rate
 - MEMS TEM Oxidation Rate
 - MEMS TEM Device Yield

- Equipment & Material Demand for MEMS p.43
 - Equipment & Material Demand for MEMS
 - YOLE’s Methodology
 - Equipment Market Forecasts for MEMS Devices
 - MEMS Wafer Shipments by Type
 - Equipment Market Forecast Breakdown per Tool Type
 - Material Market Forecast Breakdown by Device Type
 - Material Market Forecast Breakdown by Materials
 - Detailed MEMS Process Flows & Manufacturing Trends Analysis p.58
 - Focus on MEMS Accelerometer: Bosch BMA250 3-Axis
 - Focus on MEMS Gyroscope: ST Micro LIS332DLFA 3-Axis
 - Focus on MEMS Microphone: Knowles SP4040LES8
 - Focus on MEMS Microbolometer: FLIR IC50601B
 - Focus on MEMS Micro-Mirror for Pico Projector: Texas Instruments

- MEMS Manufacturing: What’s Changing, and Why
 - MEMS Si Substrates
 - MEMS Si Wafers
 - MEMS Si Wafer Thickness
 - MEMS Oxidation
 - MEMS Etching
 - MEMS TEM Etching
 - MEMS TEM Oxidation
 - MEMS TEM Etch Rate
 - MEMS TEM Oxidation Rate
 - MEMS TEM Device Yield

- Conclusions p.250
 - Final Conclusions
 - Appendices p.252
 - Yole Développement Presentation

AUTHOR

Dr Eric Mounier has a PhD in microelectronics from the INPG in Grenoble. He previously worked at CEA LETI R&D lab in Grenoble, France in marketing dept. Since 1998 he is a co-founder of Yole Development, a market research company based in France. At Yole Development, Dr. Eric Mounier is in charge of manufacturing analysis for MEMS, equipment & material. He is Chief Editor of MicroNews, and MEMS’ Trends Magazines & Markets. He has contributed more than 150 marketing & technological analysis and 50 reports.

AUTHOR

Amandine Pizzagalli recently joined Yole Développement Advanced Packaging and MEMS manufacturing teams after graduating as an engineer in Electronics, with a specialization in Semiconductors and Nano Electronics Technologies. She worked in the past for Air Liquide with an emphasis on CVD and ALD processes for semiconductor applications.
ORDER FORM
MEMS Front-End Manufacturing Trends report

SHIP TO
Name (Mr/Ms/Dr/Pr):
Job Title:
Company:
Address:
City:
State:
Postcode/Zip:
Country:
*VAT ID Number for EU members:
Tel:
Email:

BILLING CONTACT
First Name:
Last Name:
Email:
Phone:

PAYMENT
BY CREDIT CARD
Visa Mastercard Amex
Name of the Card Holder:
Credit Card Number:
Card Verification Value (3 digits except Amex: 4 digits):
Expiration date:

BY BANK TRANSFER
BANK INFO: HSBC, 1 place de la Bourse,
F-69002 Lyon, France,
Bank code: 30056, Branch code : 00170
Account No: 0170 200 1565 87,
SWIFT or BIC code: CCFRFRPP,
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY
• FAX: +33 (0)472 83 01 83
• MAIL: YOLE DÉVELOPPEMENT, Le Quartz,
75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS
• North America: Michael McLaughlin - Mclaughlin@yole.fr
• Greater China: Meiling Tsai - Meiling.tsai@yole.com.tw
• Korea: Hailey Yang - Yang@yole.fr
• Japan: Miho Ohtake - Ohtake@gii.co.jp
• Europe & RoW: Yves Devigne - Devigne@yole.fr
• General : info@yole.fr

(1) Our Terms and Conditions of Sale are available at
www.yole.fr/Terms_and_Conditions_of_Sale.asp
The present document is valid 24 months after its publishing date: February 18th, 2013.

ABOUT YOLE DEVELOPPEMENT
Founded in 1998, Yole Développement have grown to become a group of companies providing marketing, technology and strategy consulting, media in addition to corporate finance services.

With a strong focus on emerging applications using silicon and/or micro manufacturing, Yole Développement group has expanded to include more than 50 associates worldwide covering MEMS, Compound Semiconductors, LED, Image Sensors, Optoelectronics, Microfluidics & Medical, Photovoltaic, Advanced Packaging, Nanomaterials and Power Electronics.

The group supports industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to develop their business.

CONSULTING
• Market data, market research & marketing analysis
• Technology analysis
• Reverse engineering & costing services
• Strategy consulting
• Patent analysis
• Corporate Finance services (M&A, due diligence & fund raising)

REPORTS
• Collection of technology & market reports
• Players & market databases
• Manufacturing cost simulation tools
• Component reverse
• Patent analysis
• Engineering & costing analysis

MEDIA
• Online disruptive technologies website: www.i-micronews.com
• Editorial webcasts program
• Media & webcasts services

More information on www.yole.fr